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Nonequilibrium dynamics is studied near the quantum phase transition point in the one-dimensional quan-
tum Blume-Emery-Griffiths model. Its pseudospin component Sz represents an electric polarization, and �Sz�2

corresponds to ionicity, in mixed-stack charge-transfer complexes that exhibit a transition between neutral
quantum-paraelectric and ionic ferroelectric �or antiferroelectric� phases. The time-dependent Schrödinger
equation is solved for the exact many-body wave function in the quantum-paraelectric phase. After impact
force is introduced on a polarization locally in space and time, polarizations and ionicity coherently oscillate.
The oscillation amplitudes are large near the quantum phase transition point. The energy supplied by the
impact flows linearly into these oscillations, so that the nonequilibrium behavior is uncooperative.
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I. INTRODUCTION

Correlated electron systems show various intriguing prop-
erties, which are not only scientifically interesting but poten-
tially important for future applications. Their nonequilibrium
dynamics has much room for searching novel functions.
Among them, photoinduced phase transitions attract much
attention because macroscopic properties are drastically
changed by a cooperative effect often on an ultrafast time
scale and in a controlled manner.1–3

During photoinduced dynamics in quasi-one-dimensional
electron systems, coherent oscillations are often observed,
e.g., in the mixed-stack charge-transfer tetrathiaful-valene-
p-chloranil �TTF-CA� complex �in both short-time4 and
long-time5 behaviors�, the quarter-filled-band charge-ordered
organic �EDO-TTF�2PF6 �EDO-TTF�ethylenedioxy-tetra-
thiafulvalene� salt,6 and potassium tetracyanoquinodi-
methane �K-TCNQ� crystals,7 and their origins are theo-
retically investigated in itinerant electron models for
TTF-CA �with short-time8 and long-time9 behaviors�,
�EDO-TTF�2PF6,10 and K-TCNQ.11 In most of the cases,
electron-phonon interactions are substantial. In theoretical
works, phonons are often treated as classical variables in
order to reduce the numerical burden when the electronic
degrees of freedom are taken into account. However,
quantum nature is indispensable to maintaining coherent
oscillations at not-too-low temperatures where the classi-
cal Maxwell distribution of thermal lattice fluctuations
would considerably deteriorate the coherence.

Here, we focus on the quantum phase transition realized
in mixed-stack charge-transfer complexes composed of
4 ,4�-dimethyltetrathiafulvalene �DMTTF� and tetrahalo-
p-benzoquinones �QBrnCl4−n�.12,13 For n=2, 3, and 4, quan-
tum-paraelectric behaviors are observed. The dielectric per-
mittivity follows the so-called Barrett formula as a function
of temperature, where the divergence is inhibited by quan-
tum fluctuations and the permittivity is saturated at low tem-
peratures. Recently, photoinduced reflectivity changes are
measured.14 The reflectivity in the energy range where it is
sensitive to the ionicity change shows a large-amplitude os-

cillation near the quantum phase transition point.
In this paper, nonequilibrium dynamics is calculated after

impact force is introduced to a polarization in the one-
dimensional quantum Blume-Emery-Griffiths model. Near
the quantum phase transition point, the correlation length is
long and quantum fluctuations are large because the ordering
is marginally suppressed. In such a case, the impact induces
large-amplitude oscillations in polarizations and ionicity. The
cooperativity of the induced dynamics is measured by calcu-
lating the ratios of the energies of induced oscillations to the
total-energy increment. Below, we will show that the dynam-
ics near the quantum phase transition exhibits enhanced os-
cillations in amplitudes but their behaviors are uncooperative
in the present model.

II. MODEL AND METHOD

Mixed-stack charge-transfer complexes have different
types of degrees of freedom, i.e., ionicity and electric polar-
ization, although they are strongly coupled. A global change
in the ionicity does not alter the symmetry, but a finite aver-
age of electric polarizations breaks the inversion symmetry.
They can be described by spin-one operators, where Si

z takes
either +1, 0, or −1. A neutral state at site i is represented by
Si

z=0, while an ionic state with positive or negative polariza-
tion by Si

z=1 or −1. Here, a finite polarization is assumed at
each ionic site. Because of the spin-Peierls instability, an
ionic domain consisting of many sites would have
dimerization-induced electric polarizations. However, a few
molecules may not have a polarization even if they are ionic.
Furthermore, an odd number of consecutive ionic �neutral�
molecules in the neutral �ionic� background cannot be de-
scribed by such a pseudospin state. In this sense, the present
“sites” should be interpreted in a coarse-grained sense.

Once such coarse graining is accepted, we can employ the
Blume-Emery-Griffiths model,15 but one should be aware of
the following points. If we could integrate out electronic de-
grees of freedom to obtain an effective model, it might have
some long-range interaction that originates from the spin-
Peierls instability of one-dimensional half-filled correlated
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electron systems. We will not pursue nonequilibrium dynam-
ics specific to particular materials, but discuss rather general
aspects near quantum critical points. Then, we will limit our-
selves to short-range interactions. We do not distinguish be-
tween electronic and phonon contributions to electric polar-
izations, so that the present sites are composites of them.

The Blume-Emery-Griffiths model is successfully applied
to TTF-CA. It explains the existence of a triple point,16

which is experimentally observed.17 The inclusion of inter-
chain Coulomb attraction and interchain elastic energy quali-
tatively explains the pressure-temperature phase diagram of
TTF-CA.18 Relaxation processes in the neutral-ionic,
paraelectric-ferroelectric phase transitions19,20 are discussed
on the basis of its master equation.21

Now, we extend this model to the mixed-stack charge-
transfer complexes, DMTTF-QBrnCl4−n, which show quan-
tum phase transitions between neutral and ionic phases.12,13

For the spin-one model with short-range interactions, the
way by which quantum natures are incorporated is not
unique. Here, we assume that tunneling between ionic states
with different polarizations is achieved always through a
neutral state and represented by the operator Si

x defined be-
low. This quantum version is also successful in that the
mean-field theory reproduces the dielectric permittivity in
the neutral phase,22 which is described by the Barrett
formula.12,13

This quantum version of the Blume-Emery-Griffiths
model is defined by

HQBEG = − J�
i

Si
zSi+1

z − K�
i

�Si
z�2�Si+1

z �2

− P�
i

�Si
z�2 − h�

i

Si
x, �1�

where Si
z= ��1��1�− �−1��−1��i and Si

x= ��1��0�+ �0��1�
+ �0��−1�+ �−1��0��i /�2 with �j�i being the eigenstate associ-
ated with Si

z= j. The periodic boundary condition is imposed.
The parameter J �K� denotes the nearest-neighbor dipolar
�quadrupolar� interaction, P the energy difference between
neutral and ionic states, and h the neutral-ionic quantum tun-
neling amplitude. Under hydrostatic or chemical pressure,
the crystal contracts and the Madelung energy stabilizes the
ionic state relative to the neutral state. This would corre-
spond to increasing P in the present model. In the P→�
limit, the states �0�i are completely suppressed, and the
model is equivalent to the quantum Ising model �i.e., the
spin-1/2 transverse Ising model�.

We study dynamics in nonequilibrium conditions by in-
troducing the perturbation to Eq. �1� written as

H� = − �
i

Ei�t�Si
z, �2�

where Ei�t�=Eimp for i=1 and 0� t� timp and Ei�t�=0 other-
wise. The time-dependent Schrödinger equation for the exact
many-body wave function is numerically solved by expand-
ing the exponential evolution operator with time slice dt
=0.01 to the 15th order10,23 and by checking the conservation
of the norm and of the total energy for t� timp.

The main purpose here is not necessarily to simulate
photoinduced dynamics, but to study nonequilibrium dynam-
ics near the quantum critical point from a general viewpoint,
i.e., coherence and nonlinearity. By the above excitation, dif-
ferent polarization states at site i get different energies. It
does not directly transit between different polarization states.
Note that, in itinerant electron models, the gauge transforma-
tion relates photoexcitation through the modulation of site
energies via a scalar potential to that through the modulation
of transfer integrals via a vector potential.24 More impor-
tantly, Eq. �2� gives a spatially local excitation in contrast to
realistic photoexcitation, which is regarded as almost a uni-
form excitation. Later, we will discuss how strongly coher-
ence is maintained near the quantum phase transition point.
The impact force introduced above is disadvantageous be-
cause the spatial coherence is initially deteriorated. Even in
such a difficult condition, physical quantities will coherently
oscillate near the quantum phase transition point.

III. RESULTS

First of all, the ground-state properties are calculated and
shown in Fig. 1. The quantum tunneling between any states
that are degenerate in the thermodynamic limit is inevitable
in finite-size calculations and always leads to the vanishing
expectation value of Sz even in the case where the symmetry
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FIG. 1. �Color online� �a� Sz-Sz correlation between farthest
points and �b� expectation value of �Sz�2, as a function of quantum
tunneling amplitude h, with J=1, K=0.3, and different P values.
For each parameter set, the results of different system sizes, N=8,
10, 12, and 14, are shown. The curves with the steeper slope at the
tail correspond to the results of the larger size.

KENJI YONEMITSU PHYSICAL REVIEW B 78, 205102 �2008�

205102-2



is spontaneously broken in this limit. Then, we plot the Sz-Sz

correlation function between farthest points, i.e., �SN/2
z SN

z � in
Fig. 1�a�. It monotonically decreases with increasing h and
monotonically increases with P. Here, the results of different
system sizes, N=8, 10, 12, and 14, are shown for each P.
The system-size dependence is visible for small �SN/2

z SN
z �. For

large N, it steeply decreases to zero. There would be a criti-
cal tunneling amplitude hc above which �SN/2

z SN
z � vanishes in

the N→� limit. The quantity hc increases with P.
The ionicity ��Si

z�2� �at any i� is shown in Fig. 1�b�. For
P�−0.4, it monotonically decreases with increasing h. For
any P, it becomes 0.5 in the h→� limit because the ground
state of −h�iSi

x is �1 /2��1�i+ �1 /�2��0�i+ �1 /2��−1�i. For P
=−0.8, it decreases to a value below 0.5 �0.475� and then
gradually increases to 0.5. With decreasing P, the decrease in
��Si

z�2� with increasing h becomes steeper. For P=−1.2, it
abruptly decreases between h=0.5 and 0.6 and then increases
to 0.5. In the thermodynamic limit, the transition from the
ferroelectric phase ��Si

z��0� to the paraelectric phase ��Si
z�

=0� would be continuous at least for P�−0.8. Meanwhile,
the transition seems discontinuous for P=−1.2. It indicates
the presence of a tricritical point between −1.2� P�−0.8
and 0.5�h�1. In any case, the dynamical behavior with
increasing h above the transition point is similar for all P,
and the change with h is largest for P=−1.2. Then, we will
show the time-dependent properties for P=−1.2 below.

In the ground state, the polarization �Si
z� is absent at any i

in the paraelectric phase. We have introduced impact force
on �Si

z� initially and at a particular site �i=1�, as described by
Eq. �2�. Then, the polarization at site 1 grows at first. Owing
to the coupling J and the periodic boundary condition, the
polarizations grow successively at sites 2 and N, at sites 3
and N−1, and so on. They oscillate with different phases and
interfere with each other, so that their spatiotemporal pattern
is complicated. Because the parameter set used here is in the
paraelectric phase, their spatial average does not grow but
oscillates about zero, as shown in Fig. 2�a�.

Here, the lines with different h values are shifted verti-
cally by different lengths. As the transition point is ap-
proached, the amplitude becomes large, and the period be-
comes long because the relevant excitation energy decreases.
The dynamics of polarizations of course affects that of ion-
icity. The dynamics of ionicity is more complicated than that
of polarizations because Eq. �2� makes an impact directly on
the polarization. Despite this, the spatial average of ionicity
also oscillates, as shown in Fig. 2�b�, though its shape is not
as sinusoidal as that of polarizations. There are similarities
between the dynamics of ionicity and that of polarizations: as
the transition point is approached, the oscillation amplitude
becomes large, and the oscillation period becomes long. A
detailed comparison will be made later.

In order to see nonlinearity or linearity of the nonequilib-
rium dynamics, its impact-strength dependence is important.
Figure 3 shows the Eimp dependence of the time evolution of
the spatially averaged quantities. Here, the lines with differ-
ent Eimp values are not shifted vertically. Because the incre-
ment in the total energy �E= �HQBEG�t=timp

− �HQBEG�t=0 is ap-
proximately proportional to Eimp

2 , we vary Eimp
2 with a step of

4. With increasing Eimp, the oscillation amplitude becomes

large, but the oscillation period does not change. The overall
shape does not vary so much at least in this Eimp range. The
oscillation amplitude of the spatially averaged ionicity in-
creases almost in proportion to Eimp

2 �Fig. 3�b�	, while that of
the spatially averaged polarization increases sublinearly with
Eimp

2 �Fig. 3�a�	.
The dependences of these oscillation amplitudes on the

total-energy increment �E are shown in Fig. 4 for different h
values. Here, the amplitudes are measured at the maxima on
the first humps �t�20�. The oscillation amplitude of the spa-
tially averaged polarization increases linearly with the square
root of �E �Fig. 4�a�	, while that of the spatially averaged
ionicity increases linearly with �E �Fig. 4�b�	. In Fig. 4�a�,
the result for h=0.6 visibly deviates from the linear function,
but this is insignificant in terms of numerical accuracy. If the
amplitude is measured at the maximum on the second hump
instead, it becomes quite a linear function. It should be noted
that the expectation value of Eq. �1� contains a term that is
quadratic with respect to polarizations, and terms that are
linear and quadratic with respect to ionicity. No term is linear
with respect to polarizations because of the inversion sym-
metry of the model. Therefore, the result shown in Fig. 4 is a
consequence of linear relations among the energy supplied
by the impulse, the energy flow into polarizations, and the
energy flow into increased ionicity. The nonequilibrium dy-
namics shows uncooperative behaviors. The impact does not
induce a transition into the ferroelectric phase. This linearity
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FIG. 2. �Color online� �a� Spatial average of Sz and �b� spatial
average of �Sz�2, as a function of time t. The quantum tunneling
amplitude h is varied from 0.6 with a step of 0.1, and the corre-
sponding lines are shifted upward by 0.1. Other parameters are J
=1, K=0.3, P=−1.2, N=14, Eimp=4, and timp=0.3.
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may be responsible for the observed coherence: the phase of
the oscillating ionicity is maintained even if the impact is
made on a polarization locally in space and time. If any
cooperative effect was present, the ionicity would not oscil-
late about the initial value and its time evolution would show
a more complicated behavior.

What is interesting here is the enhancement of the oscil-
lations near the quantum phase transition point: the linear
coefficients are increased as the transition point is ap-
proached. The enhanced oscillation of the spatially averaged
ionicity is conspicuous. In the quantum-paraelectric phase
�more generally, in quantum disordered phases�, the
interaction-induced ordering is suppressed by quantum fluc-
tuations. Near the transition point, it is marginally sup-
pressed. Then, any small perturbation would manifest this
fact by showing a large response. There are large ferroelec-
tric fluctuations accompanied by ionic fluctuations. The cor-
relation length is long near the transition point. These facts
enhance the coherent oscillations in polarizations and ionic-
ity. These results are reminiscent of optical experiments on
the perovskite-type quantum-paraelectric SrTiO3,25,26 which
show the photoinduced enhancement of the static dielectric
permittivity near the quantum phase transition point. Al-
though SrTiO3 is a three-dimensional material, significant
cooperative behaviors are not observed in the photoinduced
changes. In the perovskite-type transition-metal oxides also,
the electron-lattice27 and covalency28 contributions on the
electronic polarizability are well recognized.

IV. SUMMARY

In order to approach the coherence in photoinduced dy-
namics of quasi-one-dimensional mixed-stack charge-
transfer complexes near the transition between the neutral
quantum-paraelectric phase and the ionic quantum-
ferroelectric phase �within a chain�, we theoretically study
nonequilibrium dynamics of the one-dimensional quantum
Blume-Emery-Griffiths model using exact many-body wave
functions. The time evolution of the system is obtained by
numerically solving the time-dependent Schrödinger equa-
tion after impact force is introduced on a polarization locally
in space and time. Even though the impact is made locally,
polarizations coherently oscillate about zero in the paraelec-
tric phase, so that their oscillation survives after taking the
spatial average. Furthermore, they induce a coherent oscilla-
tion in the spatially averaged ionicity.

The induced oscillation is enhanced near the quantum
phase transition point, so that the oscillation amplitude in-
creases with decreasing tunneling amplitude toward the
quantum phase transition point. The oscillation amplitude of
the spatially averaged polarization increases linearly with the
square root of the total-energy increment, while that of the
spatially averaged ionicity increases linearly with the total-
energy increment, implying linear relations among the en-
ergy supplied, the energy flow into polarizations, and the
energy flow into increased ionicity. The linear coefficients
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FIG. 3. �Color online� �a� Spatial average of Sz and �b� spatial
average of �Sz�2, as a function of time t, with different Eimp values.
Other parameters are J=1, K=0.3, P=−1.2, h=0.6, N=14, and
timp=0.3.
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FIG. 4. �Color online� �a� Amplitude of oscillation in spatial
average of Sz, as a function of square root of energy supplied, and
�b� amplitude of oscillation in spatial average of �Sz�2, as a function
of energy supplied. With decreasing tunneling amplitude h toward
the quantum phase transition point, the slope becomes steep. Other
parameters are J=1, K=0.3, P=−1.2, N=14, and timp=0.3.
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are large near the quantum phase transition point because of
large ferroelectric fluctuations accompanied by ionic fluctua-
tions. Nevertheless the linearity implies uncooperative be-
haviors, so that the impact does not induce a transition into
the quantum-ferroelectric phase. This behavior is reminiscent
of photoinduced behaviors of quantum-paraelectric SrTiO3,
and it is also expected in the photoinduced dynamics in
mixed-stack charge-transfer complexes near the quantum
phase transition point.
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